3.4.82 \(\int \frac {\sqrt {a^2+2 a b x^2+b^2 x^4}}{x^4} \, dx\)

Optimal. Leaf size=77 \[ -\frac {b \sqrt {a^2+2 a b x^2+b^2 x^4}}{x \left (a+b x^2\right )}-\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 x^3 \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1112, 14} \begin {gather*} -\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 x^3 \left (a+b x^2\right )}-\frac {b \sqrt {a^2+2 a b x^2+b^2 x^4}}{x \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/x^4,x]

[Out]

-(a*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(3*x^3*(a + b*x^2)) - (b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(x*(a + b*x^2))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {\sqrt {a^2+2 a b x^2+b^2 x^4}}{x^4} \, dx &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \frac {a b+b^2 x^2}{x^4} \, dx}{a b+b^2 x^2}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \left (\frac {a b}{x^4}+\frac {b^2}{x^2}\right ) \, dx}{a b+b^2 x^2}\\ &=-\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 x^3 \left (a+b x^2\right )}-\frac {b \sqrt {a^2+2 a b x^2+b^2 x^4}}{x \left (a+b x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 37, normalized size = 0.48 \begin {gather*} -\frac {\sqrt {\left (a+b x^2\right )^2} \left (a+3 b x^2\right )}{3 x^3 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/x^4,x]

[Out]

-1/3*(Sqrt[(a + b*x^2)^2]*(a + 3*b*x^2))/(x^3*(a + b*x^2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 13.39, size = 39, normalized size = 0.51 \begin {gather*} \frac {\left (-a-3 b x^2\right ) \sqrt {\left (a+b x^2\right )^2}}{3 x^3 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/x^4,x]

[Out]

((-a - 3*b*x^2)*Sqrt[(a + b*x^2)^2])/(3*x^3*(a + b*x^2))

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 13, normalized size = 0.17 \begin {gather*} -\frac {3 \, b x^{2} + a}{3 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^2+a)^2)^(1/2)/x^4,x, algorithm="fricas")

[Out]

-1/3*(3*b*x^2 + a)/x^3

________________________________________________________________________________________

giac [A]  time = 0.17, size = 30, normalized size = 0.39 \begin {gather*} -\frac {3 \, b x^{2} \mathrm {sgn}\left (b x^{2} + a\right ) + a \mathrm {sgn}\left (b x^{2} + a\right )}{3 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^2+a)^2)^(1/2)/x^4,x, algorithm="giac")

[Out]

-1/3*(3*b*x^2*sgn(b*x^2 + a) + a*sgn(b*x^2 + a))/x^3

________________________________________________________________________________________

maple [A]  time = 0.00, size = 34, normalized size = 0.44 \begin {gather*} -\frac {\left (3 b \,x^{2}+a \right ) \sqrt {\left (b \,x^{2}+a \right )^{2}}}{3 \left (b \,x^{2}+a \right ) x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x^2+a)^2)^(1/2)/x^4,x)

[Out]

-1/3*(3*b*x^2+a)*((b*x^2+a)^2)^(1/2)/x^3/(b*x^2+a)

________________________________________________________________________________________

maxima [A]  time = 1.38, size = 13, normalized size = 0.17 \begin {gather*} -\frac {3 \, b x^{2} + a}{3 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^2+a)^2)^(1/2)/x^4,x, algorithm="maxima")

[Out]

-1/3*(3*b*x^2 + a)/x^3

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 33, normalized size = 0.43 \begin {gather*} -\frac {\left (3\,b\,x^2+a\right )\,\sqrt {{\left (b\,x^2+a\right )}^2}}{3\,x^3\,\left (b\,x^2+a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^2)^2)^(1/2)/x^4,x)

[Out]

-((a + 3*b*x^2)*((a + b*x^2)^2)^(1/2))/(3*x^3*(a + b*x^2))

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 14, normalized size = 0.18 \begin {gather*} \frac {- a - 3 b x^{2}}{3 x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x**2+a)**2)**(1/2)/x**4,x)

[Out]

(-a - 3*b*x**2)/(3*x**3)

________________________________________________________________________________________